
AFOSR Scientific Report
AFOSR 70
UNCLASSIFIED

USCAE 11'-'

USCAE M
April 1970

UNIVERSITY OF SOUTHERN CALIFORNIA

SCHOOL OF ENGINEERING

CONSTANT DIRECTIONS OF THE

RICCATI EQUATION

David Rappaport

United States Air Force Office of Scientific Research Grant
No. AF-AEOSR- 1244-67 and National Aeronautics and Space
Administration Grant NGL-05-018-044, Suppl. #3.

DEPARTMENT OF AEROSPACE ENGINEERING

1. This document has been approved for public release
and sale; its distribution is unlimited.

. CSCL 12A
G3/19

N72-26479

Unclas
31951

https://ntrs.nasa.gov/search.jsp?R=19720018829 2018-07-24T02:57:38+00:00Z



o

o

Qualified requestors may obtain additional copies from the
Defense Documentation Center, all others should apply to the
Clearinghouse for Federal Scientific and Technical Information.

C



ACKNOWLEDGEMENTS

The author is very grateful for the inspiration and guidance

provided by Professor R. S. Bucy. His gratitude likewise extends

to Professor L. M. Silverman whose suggestions and encourage-

ment proved to be of great value.

This report was made possible by the support of the Air

Force Office of Scientific Research under grant AF-AFOSR-1244-67

and NASA grant NGL-05-018-044, suppl. #3.



NOTATION CONVENTION

x Vector

(I • II .2 Quadratic form
Xi

Transpose

6.. Kronecker delta
ij

I (d X d) Identity matrix

C Set of all constant directions

F Positive semi-definite initial condition of the riccati
equation (II- 3)

II(n,r) Solution to the riccati equation (II- 3)

Span of | cp g , . . . , c p 1 g |R1

m The smallest i such that R = R , i ^ m

^> Direction of implication

a. s. Almost surely

k- 1
W See Lemma I

k- 1
Y See Theorem N

A ^ 0 A, a square matrix, positive semi-definite

c Inclusion

€ Belongs to

C 1 Reference

E Expectation

# Penrose pseudo inverse
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CHAPTER 1

INTRODUCTION

The appearance of riccati type equations in the solution of

optimal linear quadratic control problems and in optimal linear

filtering problems with gaussian randomness has been noted and

studied by many researchers. lii such problems the matrix of

quadratic form for performance index under optimal control, and

the optimal error covariance matrix, in the control and filtering

situations respectively satisfy nonlinear difference equations in

discrete time, nonlinear differential equations in continuous time

which are of the riccati type. In references [5] , [9] -[12] , these

equations are studied and their importance recognized in the mech-

anization of the optimal feedback control and the optimal filter,

respectively, in the control and filtering contexts. For the parti-

cular class of problems corresponding to the cost-free-control

quadratic regulator problem, in which the cost is not explicitly

dependent on control, and the filtering problem in which the observa-

tions contain additive correlated noise, commonly called colored

noise, it has been noted that it is possible to reduce the computational

complexity of the optimal system; that is, reduction in the dimension

of the optimal controller or filter. The discrete time cost-free-

control quadratic regulator problem is discussed in reference [ 12] .

The formulation and solution to the discrete time filtering problem

with additive correlated observation noise is presented in reference

[9] . In [ 9] the states of the system being observed are totally

augmented by the dynamic structure of the observation noise.
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Efforts to reduce the computational complexity of these dual

control and filtering problems fall into two groups; the continuous

time and the discrete time cases. In the former case the three note-

worthy attempts are found in references [ 2] ,[3] and C 9] . In [2] a

continuous analog of the model in [ 9] is assumed with the states of

the observed system being augmented by the correlated observation

noise states. A data-differentiating algorithm is applied to the

augmented model. The algorithm comprises a set of sufficient con-

ditions for reduction in filter dimension. In [3] and [4] a parti-

cular correlated noise model is assumed and a data differencing

scheme is employed which avoids the need to augment the states of

the observed system. A common aspect of these two approaches is

the conversion of the given system into a different, but equivalent

form, which contains white observation noise, and for which the optimal

filter is derivable. The discrete time case was first considered in

[6] . Another effort is made in reference t 8] , which is a discrete

time version of [2] . Both [6] and [ 8] reduce the size of the totally

augmented model by the number of observations, the rationale being

that the totally augmented model provides perfect measurements,

hence estimates in these directions are redundant. In addition I 10]

provides a sufficient condition for further reduction.

Undertaken in this ifeportiis -an examination of the riccati

equation arising from a linear discrete autonomous cost-free-control

quadratic regulator optimal control problem with a scalar input, or

equivalently by duality (see [ 9] , t 10] and [ 5]) that occurring in

optimal filtering of a linear, discrete time autonomous, totally
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augmented system driven by a white gaussian noise sequence,

observed by a noiseless scalar output. The problem is defined

as a search for constant directions of the riccati equation which are

independent of the initial condition.' The constant directions are

those directions in which the riccati equation reaches equilib-

rium in finite time. It is shown that the set of constant directions

comprise a vector space. A set of linearly independent constant

directions of dimension K, means a like reduction in the 'dimension

of the nonlinear riccati equation and the elimination of constant

singularities after a finite time interval. Necessary and sufficient

conditions for theexistence of such constant directions are determined.

These conditions comprise linear relations between the moments of

the linear system. The moments are a structural feature of the

system.

In the control problem a consequence of the concept "constant

directions" is necessary and sufficient conditions that the dead beat

control [13] be optimal for a given initial system state. For the

case of filtering, the optimal one-step predictor is shown to consist

of two component parts; one, corresponding to the set of constant

directions, being a delay line with constant tap gains, and the other

having the commonly known dynamic form utilizing the complete set

of past outputs in general.

The attack is mounted via consideration of the cost-free-

control quadratic regulator problem. While this is not necessary

it provides a convenient framework in which intuition is a helpful guide.

The results developed for the control case are then applied to optimal

filtering by reason of duality.
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The results indicate that the discrete time data differencing

techniques are not necessary to accomplish reduction in computational

complexity and in actual fact do not achieve the maximum possible*

It is worthwhile to note that the discrete time cost-free-

control quadratic regulator optimal controlproblem is well posed,

whereas the corresponding continuous time problem is not necessarily

so. As is shown in the sequel, the concept of a constant direction of

the riccati equation corresponds to an optimal trajectory passing through

the origin at the termination of the interval of controllability (see [l3l).

The analogous behavior in the case of continuous time is instantaneous

removal to the origin. A condition of singularity!

This report is partitioned as follows: Chapter I is an

introduction. Chapter II is a detailed statement and description of the

problem. Chapter III contains the derivation of preliminary results.

Chapter IV consists of the main results. Chapter V is devoted to

further implications of the main results. Chapter VI is the application

of the results to optimal linear filtering. Chapter VII is a comparison

of the results obtained here with those obtained by data-differencing.

-4-



CHAPTER II

STATEMENT OF THE PROBLEM

A. The cost-free-control quadratic regulator problem (see [l4], Chapter

13, for more information on the discrete time optimal control problem).

Consider a discrete-time optimal control problem for an autonomous

linear system with a scalar input described as follows:

a) The motion of the system is specified by

+ S^ ' n= 1 .2 . . - . .N (II-1)

x = c
—o —

where,

x is column vector of dimension d
—n

cp a nonsingular (d X d) matrix

g a (d X 1) matrix

and

q a scalar, the control variable.
n

b) A cost not explicitly dependent on the control variable will be

assigned to each trajectory on the interval [0, N] by the scalar functional

N- 1
V ( N , r ; c , 0 ; Q*) = ^ || x.

-5-



N
where Q denote.s the control sequence q. i = 0, . . . , N-l , and

where

H is a (d X r) matrix d ^ r, and

F is a (d X d) positive-semidefinite (^ 0) matrix.

The optimal cost is given as

V°(N,F;c_,0) = min V(N,r;c, 0;Q^) = ||-c||p

. <k N

0 k i s N-1

where

PN = *'PN-1«> - CP 'PN-lg(s'PN-lS )S /PN-l* + H'H ("-3)

p o = r

and # denotes the Penrose pseudo inverse (see [12"1 ). Denote the

solution to (II-3) by 'H(n,r) .

Note that the autonomous nature of the system implies that the cost

is the same on any time interval of the same duration as [0, ISP. This

enables the fixing of the intital time, here conveniently taken as zero,

while the final time N is moved ahead as optimization on intervals of

increasing length are considered. This accounts for the "forward"

riccati equation (II-3), rather than the usually encountered "backward"

ricicati equations in the optimal control setup.

-6-



B. The correlated noise problem (see reference [93). Consider a

discrete-time optimal filtering problem for an autonomous system with

a scalar output described as follows:

a) The motion of the system is specified by

x , , = *x + Gu
—n+1 —n —r

(II-4)

where,

x is a d-dimensional column matrix,
—n

i|/ is a (d X d) nonsingular matrix,

G is a (d x r) matrix, d ^ r,

u is a vector zero-mean gaussian white noise sequence,

independent of x with covariance Eu.u. = 6..I .r n -i-j 13 r

£ is a zero-mean gaussian random variable independent

of u , with covariance Ecc = P.
—n. —

The scalar output of the system is given by

Z = hx , (II-5)
n n

where

h is a (1 X d) matrix.

(II-4) and (II-5) are the dynamic equation for the so-called totally augmented

system.
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b) As is well known ([9], [111) a random variable x , .—nr1 / n
r * i2

which minimizes Ei \'(x - x , ) I for all vectors X, is given
L-r —n+1 —n+1 / n J —

by the gaussian random variable which is the expected value of _x

given the observed sequence, z., 0 ^ i ^ n. This random variable is

generated by the difference equation

* 4 . i / = <Px / , + cpP h'(hP h')#(Z - hx . .) a.s. (II-6)-n+.l/n —n/n-1 n n n —n/n-1

# denoting the Penrose-pseudo inverse, and where P , the error co-

variance function

E(x - x , - ) (x - x . ,)' = P
-n -n/n-1 -n —n/n-1 n

satisfies the nonlinear riccati difference equation

P , • ' • ' = *P ^ - \J(P hy(hP h')#hP \]f' + GG'
n+1 n n n n

(II-7)

C. The optimal control and optimal filtering problems just outlined

are duals of one another under the mappings

h «- » g'

G < > H' (II-8)

. i
cp * > *
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An immediate result under this duality transformation is that the riccati

equations (II-3) and (H-7) map into each other. See references [5], [9]

and [ l l ] for more information on duality.

As is clear, the riccati equation is central to the solution of optimal

linear control and linear filtering problems. An important concern in

the implementation of the optimal filter and optimal controller is the

dynamic dimension of the riccati equation, i. e. , the number of indepen-

dent varying directions. It is shown in T6l and [8] that for the colored

noise problem the iteration for P , which is a (d x d) matrix, can es-

sentially be reduced to iterations of matrices of size ((d - s) X (d - s ) ) ,

s being the dimension of the observation in the filtering case, that of

the control in the control case. The problem to be examined in the sequel

will be restricted to the case of s = 1, although some of the preliminary

lemmas which are proved are in actuality not so constrained. The prob-

lem to be confronted can be phrased as follows:

"To find the set of all linearly independent directions C

for which the vector n(n,F)c_,£ € C, reaches an equilib-

rium point in finite time, for all initial conditions F, where

II(n, F) is the solution of equation (H-3). "

-9-



CHAPTER III

PRELIMINARY RESULTS

This chapter is a compilation of definitions, theorems and

lemmas needed for the derivation of the main results which are sum-

marized in the chapter following. Definition A formulates the concept

of a constant direction of the riccati equation. Theorem B reveals its

physical meaning. The remainder of the results of this section further

characterize and describe the set of constant directions.

The control system and the corresponding riccati equation to

which reference will be made in this section are described by equations

(II-I), (II-2), and (II-3).

DEFINITION 1: c_ is a constant direction of equation (II-3) if

there exists some finite N such that for all n >_ N and each r-, >_ 0,
2 2

each r 2 ^ 0 , | |c j | = | |cj | . Let the set of all
Ji(n, i-j) n(n, r2)

constant directions of (II-3) be denoted by C.

Note the r -independence of C.

THEOREM A: jCeC iff 3N a ' v n , m > _ N and for each r1 >. 0,

each r 2>0, ||c||n(n> ̂  = ||c||J(in> ̂  .

PROOF: If : take n = m. Conversely if c_eC, then
2 2 2

M£lln(n, rif McJInfn.H'H) = ' '£' 'n(n+l ,0) = H£ll

and the theorem follows inductively.
-10-



Theorem A provides an alternate definition of C.

DEFINITION 2: c^C^, N finite, if for V n ̂ N , each r >_ o,

each r2>o,;||c||j(nf ̂  - llcM^ ̂ j.

Note that by definitions 1 and 2, C^ c C, that C..C C. i <_ j

and that if c_ ̂ C, then ££Ck for some finite k^l,

Remark; In the sequel the statement Mc_ can be taken optimally

to the origin by (II-l), (II-2) on [0,N] for r = r " means that

for system (II-l), (II-2) with terminal cost r there exists a set of

optimal controls q., i=o,...,N-l and a corresponding optimal trajec-

tory c, 2L-j, x̂ ,....,)̂  where x^ = £. System (II-l), (JI-2) will

henceforth be denoted by the symbol *.

DEFINITION 3: Let x et(x_r x^, Qk
£) denote the trajectory of*

on [k, a] x. , >^,+-]»••• >2io » generated by the control sequence

qk,...,qjl_1, which is denoted by Qk
£.

THEOREM B: £eCN for some finite N iff c_ can be taken

optimally to the origin by * on [0,N] for r = 0,(i.e., x^_-j= $~ g a,some a)

The following two lemmas will be used in the proof of Theorem B.

Lemma a; V°(N, 0; c_, 0) <_ V°(n, r; £ 0) \/ n >_ N,V r >. 0 and

each £.

Proof: Let Q n denote the control sequence q %-!' Let

NQ denote the first N controls. Then for each r >. 0, each £ and

each n>.N V(N, 0; c, 0; QQ
N) £ V(n, r; £, 0; QQ

n) by(II-2).

Then V°(N, 0; c, 0) < V(n, r; c, 0; Qn
n) for any Qn

n . The result— — u u

follows.
-11 -



Lemma b: If £ can be taken optimally to the origin by *
Nfor fi =0 on IO,N] along trajectory t(£,£, QQ ), then £ can be

taken optimally to the origin along the same trajectory for each r >_ 0

on tO,N] and £ e C N -

Proof: For r = f arbitrary, ^ e t(£, £, Q ) on jO.Nj
N-l 2 N-l ' 2 ° 2

V°(N. 0; c, 0) = I ||x || t = I ||x || + Mx^ll. <
i=o n H'H 1=0 1 H'H ^ r

V°(N, r; £,0) by (II-2) and lemma a. Hence t(£, £, QQ
N) is an

optimal trajectory for r on tO,N] and equality holds.
n N

For each n > N let Q be the control sequence Q

augmented by q . = O N < _ i < _ n - l . Then t(£, £, Q n) is a

continuation of t(o, c, Qrt ) for which x. =0, Vj N+l < i < n .
Q ^j

For r = r arbitrary, x e t(o, c, Q^n) on [0,n]—• — — o

V°(N, 0; £, 0) = I M X - I I 2 , = "Z Ik, I I2, + l lx. l l2 . iVO(n,r;£,0)
i=o ] H H i=o n H H "^ r

by (II-2) and lemma a. Hence t(£, £, Q n) is an optimal trajectory on

[0,nJ and equality holds. By Theorum A £eC,. .

Proof of Theorem B: If: by Lemma b. Conversely, suppose

£eC N for some N finite. Then by Definition 1

V°(N,0; £,0) = V°(N,r; £,0) for each r >. 0. Let r] = 0 and

r2 > 0 arbitrary. Let x| e t] (xjj,, £, Q^1)) and . x^ e t2(x^,£,Q0
N(2))

denote respectively the optimal trajectories on [0,N] for r-, and r2-

Then
N-l 2 N-l 9 2 9 2
I MX II, = I l |x2H , + M x £ l l .

1=0 n H'H 1=o 1 HH ^ F2

-12-



Assume X2 = £ . Then V°(N,0; c,o) >• I \\tjf\-\ contradicting
"^ i=o ] H'H

optimality for r-j. Hence x^2 =£ and t2(£,£» Q0
N C2)) is an

optimal trajectory for 'FI = 0 on [0,N] .

COROLLARY B.I: £eCN for some N finite iff 3 a trajectory

of *, x.. et(o,£, Q ) on [0,N] which is optimal ,for each r >, 0 .

Proof: by Theorem B and Lemma b.

The following theorem shows that C is not empty.

THEOREM C: *~1g e^ and for V . n >_ 1 n(n,0*"19 = H'H*"^ .

Proof: •n(n,0*"1g = H'H*"1g follows from ('11-3) for V n >_ T.
i 2

Hence V (n,«; c,o) = I U" g||u'u ,Vn> 1, tfr > 0 for * .— . -M n — ~~

Theorem C contains the result that not only does the quadratic
-i 2

form ||<f>~ g|L/n .) assume a constant value for Vn >_ 1, \/r >_ 0 but

that the riccati equation 11-3 is constant in direction 4." g for

V n >_ 1, \/r >_ 0. The next theorem generalizes this result.

THEOREM D: £eCN for some N finite iff for V n, m >_ N

each r-| >. 0, each r2 >. 0 n(n,r-|) £ = n(m,r2) £ .

Proof: If: by Theorem A. Conversely by Lemma a

V°(k,r; £,o) >.V°(i, 0; £, o) V k >_i, each r >. 0, each £. This implies

by (II-2) that n(k,r) - n(i,0) >. 0 . If £e CN then

2 2
I l-HnCn.r^ - n(N,0) = H£Hn(m,r2) - n(N,0)

 = ° v n' m - N '

Let z^r) = n(i,r) - n(N,0) i ^N. z ^ O ^ O implies that £..(•)

can be factored as z ^ ( • ) = zS2 (•) z^(').
-13-



2 2
Therefore | |c| l - | |c| 1 = 0 gives

i- 1-
2 r ) = 2(r) = 0 .

Therefore
£ = £m (r2) £ = 0 v n, m >, N

and the result follows.

COROLLARY D.I: C is a linear vector space.

Proof: By Theorem D.

Theorems B and D will be seen to play the principal roles in the

analysis that follows.

DEFINITION 4: The ith moment of system (II-l) is defined to be

H ^g = u. , i an integer.

Remark: Moments are invariant properties of a system in that

they are independent of the coordinate system in which the system is

represented.

Remark: n(n,r)<j>~ g = H'U_I.

Let R1 = span {$~1g,. . . ,4>"1g} .

Let m <_ d be the largest positive integer such that {$' g,...<b~m g}

are linearly independent.

Remark: Rm is the space of completely controllable states

(see [13] ).

Lemma c: The vector q'^g e Rm V i , i = 0, +_ 1 .....

Proof": see [7].

COROLLARY c.l : Every consecutive "string" of vectors

-14-



Vi , i = 0, +_!,..., are linearly independent.

Proof: Obvious.

Lemma d: CcR

Proof: If £eC then by Theorem B £ is a completely controll-

able state (see [13] ). Hence CcRm.

k k-iLemma e: £eR , £fc R cannot be taken to the origin in less

than k steps, i.e., on [0,i] , 0 <_ i < k.
k

Proof: £= I <T g a., a. \ 0, From (III-2)
i=l

-i = *1~ g ak + *1" ~lak-i+ ••' + *1~lg al + 9 q-j-i + ^9 ̂i-2 +"'

+ .<( '1"9 V'

By Corollary c.l and since a,, ̂  0 x. V o, for i = 0,...,k-l .
"^ 1 . ̂ ~

Lemma f:. Let c E Cw for some N f ini te . Let x et(o,c,() )- ii • o

be an optimal trajectory of * on [0,N] for r = 0 (see Theorem B).

Then x^ e CN_ I V i , 0 <_ i <_ N - 1 .

Proof: By the principle of optimal I ty (see [1]) the trajectories

x.. et(£,_x-, Q- ) on [i,N] vi> 0_< i <^N - 1 are optimal trajectories

of * for r = 0. The lemma follows by Theorem B as * is an autonomous

system.

Lemma g: Let c ^ e C ^ , c^C^, for some N > 0, Let

x et(o, c.,, () N) be an optimal trajectory of * on [0,N] for r = 0
— " — —11 0

(see Theorem B). Then _x. \ £ each j, 0 < j < N.
J

-15-



Proof: Suppose 3 x. = o , 0 < j < N and x. H o, 0 < i < j._j _ _-, _ —

Then the trajectory i.et(2, £, Q ) where JL = x. for 0 <_ k <_ j . ,

i|< = o. for J < k £ N, qk = q^ for 0 <_ k <_ j-1 and qk = 0,

J 1 k 1 N"1 is also optimal on [0,Nj for r = 0. Since x. fc 0,
J

X-i-i = 4"' g a for some a = 0 by (II-l). By Theorem C x. ̂  C-j .

Assume that x. 0 e C 0 each A, 1 < a < j. However, this implies
— J-X, x, — —

XQ = c.,eC., where j < N. Contradiction ! Hence 3 some k > 1,
* " J

J - k 10 3 .̂(k.i)̂ ,̂ x^XC^x.^eC^ for some a > k.

Let y_ = x. k, w = ̂ j.̂ .-jj. Then by (II-l) y_ = <T w - 4>" g 3 for

some 3. By theorems C and D for V n >^ a, each r >_ 0,

** n(n,-)y_ = <j>'n(n-l,')w - <t>'n(n-l ,.)g(g'n(n-l ,.}g)#g'nCn-l ,-)w -I- H*Hy_ .

Two cases:

(1) g n(n-1 ,»)w_ = 0, Vn >^ k. This means that y_e C^ since

the right side of ** is constant independent of r for Vn >_ k.

Contradiction ! Therefore x. V 0, each j, 0 < j < N.
j

(2) g'n(n-l,-)w. = b \ 0 Vn >_ k. Then ** implies that
M

f'n(n-l ,-)g(g'n(n-l ,«)g) b is constant for V n >_ t independent of r.

Therefore b2(g'n(n-l ,«)g) is constant Vn >_£, independent of r , i.e.,

9 e^o- • Assume a >_ d otherwise the contradiction is immediate
~~ 1

by Lemma e and Theorem B. By Theorem D

n(n,.)g = Vn(n-i,.) <j> g - ̂ (n-i ,-)g(g'n(n-i ,.)g] g'n(n-l ,«)<j>g * H'H g.

The term on the left and the two rightmost terms on the right are constant

for Vn >_ a, independent of r. Hence (f>g e C . It follows inductively
X> ™ -i

that ^geC , tfi >_0. But by Lemma c and Corollary D.I y_e C .
X»"™ 1 J6™ 1

Contradiction ! Hence x. ̂  0 Vj, 0 < j < N.
J
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The next theorem and its corollaries demonstrate two central

properties of C: C is completely characterized by the largest k <_m
k

such R c C : the riccati equation (II-3) assumes r-independent values

in constant directions after a transient period of duration <_ m.

THEOREM E: Let £eR , £^ R^~l for some k <_ m; then ££ C

iff C. = R1 i = l,...,k.

Proof: If: by Corollary D.I and Definition 2. Conversely,

suppose £ eC, then £eCN , where N = min i 3 £eC • .

By Theorem B and Lemma e N ^_ k and 3 exists an optimal trajectory

of * on [0,N], i.e., x_.e t(£, £, QQ
N) for r = 0. By Lemma g

2Lj * £, 0 < j < N. Hence by (II-l) x^ = o = ̂ x̂ ^ g q N_i» qN-1 ^ 0

and *N_J = -^S qN-1 - ...-*" 9 qN_-j 1 1 i 1N- By Lemma f

XN_. e C. 1 <_ i £N. qN_i ^ 0 implies that x.... 1 <_ i £ k are

linearly independent vectors. Therefore, for each £ , .1 £ a <_ k the

vectors x,, . 1 <_ i <_ a span R£ and by Corollary D.l R£ c C .
0

By Theorem B and Lemma e R = C0 .
' Af

COROLLARY E.I: Let £eRk, cfc R^1 for some k £ m. If £e C

then Rk^Ck.

Proof: By Theorem E.

COROLLARY E.2: C = C. = R* for some a £ m.
"~ Af

Proof: By Theorem C and Lemma d R^CCR111. Let a be the

largest k <_m 3 R£c C. Assume £eC, £^ R£. Hence by Lemma d £e R

some h, a < h <_ m. By Corollary E.I R CC. Contradiction !

Therefore C = R£ and C = C by Theorem E.
Jt
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The sequence of theorems F - I reveal further properties of the

riccati equation (II-3) and provide results equivalent to Theorem E.

These will be used to derive an algorithm for determing the size of C.

THEOREM F: Let £e Rk, c_$ Rk"1 some k <_ m. If £e C, then

g'ntn.'H^g = 0, Vn >_ i each i, 1 <_ i <_ k-1.

Proof: By Theorem E C. = R ] i = 1,...,k. Therefore ̂ """geC.,

1 <_ i <_ k. Let 2 <_ i + 1' <_ k, then for n >_ i +1 by Theorem D

/ . _ \ • . •

n(n, •)*" g =-fj'ndi-l.-H^g - * n(n-l ,«)g(g'n(n-l ,.)g)#g'n(n-l ,-)<))"1g

If g'n(n-lj')*"1 g = b. H 0 constant Vn - 1 >_ i, r-independent, then

g eC.. By Theorem B, Corollary c.l and Lemma e, if g e C, g^Cj for

j < m. But i < k ̂  m. Contradiction ! Hence b. = 0, Vi 1 <. i <_ k-1

THEOREM 6: If g'n(ns-)<f
1g = 0, V n >. i l < . i < . k - l , then

i-1 .,
n (n, •) *" g = I *J H1 u /. ,x V n >_ i, 1 <_ i <_ k.

j=o -u-JJ

Proof: By Theorem C n(n,«)<('~1g = H'U . Assume the result
~ 1

holds for £- 1 < k. Then for £ £ k, by (II-3)

n(n,«)<j> g = 4> n(n-l,r)<() g + H H $ g

j=o
£-1 .,

THEOREM H: If n(n,-)<('"1 g = I <(>J H' u ,. .}, y n >^ i
j=o "I1"j;

i = 1,.. ,k, then Ci = R
1 .

Proof: by Corollary D.I

-18-



Define for 2 < k < m the vector

Wk-1

uo' u-2 + ul'

Note that if W1 = 0 then W1"1 = 0 .

THEOREM I: Wk-1 = o, 2 <_ k £ m, iff lUn.O-f1 9

1=1 i1 •= I <j>J H u ,. .» V n ^ i, each i 1 <_ i <_ k.
j=0 -U-JJ

-i

J=o

Proof: If: by Theorems E - H since for n >_ i g'n(n,')*" g

i k-1u. u /. .\ = 0, each i 1 < i < k-1; i.e., W = o .
J -u~jy ~ ~ ~

-iConversely, by Theorem C for k = 2 g'n(n,-)<l>~ 9 = LIO' u_-j = 0 and

by (II-3) n(n,-)4>"2 9 = <f>'H'H .f."1 9 + H'H <()"2 g for V n ̂  2 .

Assume the result is true for a j < k. Then for j + 1' <_ k by (II-3)

•n(n,r)+-(j+1)g = /[V
£=0 -(J-0

- *n(n-l,r)g(gln(n-l,r)g)#

£=0

and the result follows.

J-(j+l-A) tf n > j + 1 since WJ = 0

Remark: Theorems E - I are equivalent.
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CHAPTER IV

MAIN RESULTS

By Corollary E.2 C = RA for some £ <_ m. The next theorem

which is the main result, provides a rule for calculating the value of a.

THEOREM J : For 2 £ k < m Wk-1 = £ Wk ^ o iff C = Rk.

For k = m W"1"1 = o iff C = Rm.

Proof: If C = Rk, k £ m then by theorems E - I Wk-1 = £ .

For k < m take a arbitrary k < a <_ m. Suppose W^~ = £ . Then by

theorems I and H R£cC. Contradiction 1 Hence WA"H o_ each Ji
k-1k < a <_ m. Conversely, if W = £, k £ m then by theorems I and H

k m kR CC. For k = m C = R by Lemma d. If k < m and IT ^ £ assume

.3 £eC, £fc;R . By Lemma d, £eRA for some a , k < a <_ m, c§ R£~ .

But theorems E - I imply that W£"1 = £, i.e., W = £ . Contradiction !

Hence C = Rk .

k
THEOREM K : If £eC then £= J <()"ga., a. ̂  0 some

i = l 1 K

k 5 m, £eC(( and

k i-1 .,
n(n,-) c =.Z Z i3 H1 u a V n > k .

~ i=l j=0 -U-J) ! ~

Proof: Theorems E - I.
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CHAPTER V

FURTHER IMPLICATIONS OF THE RESULTS

The following theorem describes when the dead-beat control

(i.e., the control which minimizes the time to reach the origin) is

optimal (see [13] ).

k

THEOREM L; Let c = 7 <>~ g a,, a. * 0, k < m. ce C iff
~ 1=1 1 k - -

£ can be taken optimally to the origin by * for V r >^ 0 by the dead-

beat control q. = a.+, 0 <_ i <_ k-1 on [0,k] .

Proof: It follows by Theorem B. Conversely, if £E C £e C. ,

£VC. -, by Theorem E. Let x^ e t(p_, £, Q ). be an optimal trajectory

which takes £ to £ on [0,k]for r=0 (hence by Lemma b for .V r >_ 0).

Xfc = g(ak + qk_-,) + 4>g(ak_1 + qk_2) +. ..+<|)
k"1g(a1 + qQ). By Corollary c.l

xk = 0 iff q. = ai+1 , i = 0,..., k-1.

Since a constant direction of the riccati equation (II-3) is

r-independent, it is clear by Theorem D that a constant direction is an

asymptotically stable equilibrium direction. Also, by Corollary E.2 this

equilibrium direction is reached in m or less steps. Once the riccati

equation (II-3) reaches the equilibrium point in a constant direction,

any further calculation of the value of P in that direction is re-

dundant. This motivates the following discussion.

DEFINITION 5; Let C = R* . Then the dynamic rank of the

riccati equation (II-3) = d-fc , where d = system dimension.

-21-



Consider that the system (II-l) is in the coordinate system

A= U~ g,..., $" g, Lj = I §.]»••• if^ , where A is a nonsingular dxd

matrix, i.e., the e., i = l,...,d, are a set of basis vectors, and d-£I
is the dynamic rank of the corresponding riccati equation. It is clear

from Theorem B and Corollary E.2 that after a transitory period of

length £, n(n,r) can be partitioned as

A B
n(n,r) =

B D(n,r)
, n > £ where (V-l)

D(n,r) is a(d-£)x(d-£) matrix, and A and B are constant matrices

independent of r . From equation (II-3) it follows that D(n,£) can

be computed recursively in terms of itself, and the constant matrices A

and B, by means of a (d-£)x(d-£) matrix riccati type equation. Note

that all r-independent constant singularities are eliminated from the

iteration by this reduction since they are a subset of the set of

constant directions.

It is of interest to know when the submatrix Dp is nonsingular.

The following theorem provides a sufficient condition for Dn to be

nonsingular.

THEOREM M: If r> 0 then D(n,r) > 0 V n >_ 0.

Proof: Suppose 3 a(d-£) vector c_ , D(n,r) c* = 0 for some n.

Let £ be the d vector c_' = [0,... ,0,c*'] . Then for system * with

r- r* > 0 V°(n,r*; c, o) . llcll*^., - | |c*| l̂ ,,*,. Let ̂

x..et(x , £, Q n) be an optimal trajectory of * on [0,n] for r .
n * "-1 2 2 '

Hence V°(n,r ; £, o) = J 11 ^ - 1 1 H'H
 + 112^11 =0. Therefore

-22-



x = 0 and H x_. = 0 0 ̂  i <_ n-1, But this trajectory is obviously

optimal on [0,nJ for r = 0. Then by Theorem B £e C, where
a

£ = I 1- a-j- Contradiction ! i.e., P(n,r) > 0 V n >^ 0.
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CHAPTER VI

APPLICATION TO OPTIMAL LINEAR FILTERING

Consider the system (II-4) - (II-7) under the mapping (II-8) .

This is the dual of the optimal control problem * studied in the previous

sections. The results obtained for constant directions of equation (II-3)

apply by duality to equation (II-7). For example: define u. = h^ G,
X.L • _

the i moment of (II-4), (II-5). Let C denote the set of constant

directions of (II-7). Let S = span of

k-2
v '

j=o Uj "-^-J-1)
u. u 0' + u, u0-2 1 •

i
u u i

{ ]>~ l t \ ' , . . . , >f"k h'} . Let

The dual of Theorem J is

For k = m

THEOREM N: For 2 < k < m

m

k"] iff C = S

Y01"1 = iff C = S

Proof: By duality.

The reduction in dynamic rank of the riccati equation (I 1-3)

discussed in the previous chapter applies equally to the riccati equa-

tion (II-7) by reason of the duality map (II -8).

It will now be demonstrated that the dual of an optimal

trajectory starting at c_ and arriving at the origin in finite time

period [0,k] for r = 0 is the filter direction £ for which the

-24-'



best one-step predictor estimate is a constant linear combination of the

last k outputs for n _> k-l. Note that in the proof below the estimate

equations hold almost surely.

k
THEOREM 0: Let A. = £ h <J> a,- (a row vector), a, * o ,

"* j _ 1 I K

k <. m. . x^ e C if and only if

k
A* • V1/n = Ji a. zn_ i+] a.s., all n > k-l.

( • denotes the vector inner product.)

Proof: If AJ,£ C by C11"6)* Theorem F and duality

- l )« for n i'*'1-

Assume hn(n,r)h' > 0, then

VVl/n = al zn + -kk* ' h a l }* Vn-1

k-l ,-
= al zn + *kll - where - *

If hn(n,r)h' = 0 then

= a, zn + Afc.r Vn-1 '

By the dual of Theorem E, x^_i e C and it can be shown that the desired

implication follows inductively.
k

Conversely assume that x^. 2Ln/n
 = I ai zn-i+l ' a11 n ̂ -k

' i=l
Note that from equations (II-4) and (II-5) it can be shown inductively
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that

1

Hence

.| a . (h
,

= zn_.+1 + h G +.,.+ h

-...+ h j < n = o

all n >^ k-l,si nee E Iu

conditional expectation

j <_ n ]= o. By smoothing property of

a. (h 4-- G .

all n >_ k-l. Letting j = i-1, n = m+1

k-l
i i

,
a j+1(h « G u +...+ h ^ G

Hence
k-l

aitl

i < m = 0,

all m > k-2 .

Inductively it follows that

Vi+T

where
,

The ^., 1

1= -I h
i = l

each i, 1

k k1 j <. k, span the vector space S , and for any A_ eS , i.e.,
k _, k= • 7 b. z .,-,, n > k. Since h ^ eS ,. i-i i n-1 «i —
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Therefore for

- h

Namely,

h <jT̂ = 0 .

or

= 0, 2 £ i <_ k, n >_ 1-1, all r .

Hence by theorems F - H and duality A^e C.

The following corollary enables the immediate characterization

of filter directions which are fixed sums of past data.

COROLLARY 0.1: If Yk"1 = o, then

= z
n-i+T

n each i, 1 < i < k,

all r > 0.

Proof: By Theorems N and 0.

In sum Theorems N and 0 state that one-step prediction in

constant directions merely corresponds to a finite length delay line with

constant tap gains. One-step prediction in nonconstant directions has

the usual dynamic feedback form with varying gains in general.

The results presented above are employed in the following

filtering example.

Example:
1 1 1
1 0 0
0 1 0

*n +
0 1
0 -1
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zn ' M 1 TJ •*„

2
It can be easily verified that Y = £, hence there are three linearly

independent constant directions which in this example means that the

riccati equation reaches equilibrium in three iterations. Calculation

establishes that

and

1
-1
0

-1
2

-1

0

-1

3

for all n > 3, all r .

n+l/n

-28-



CHAPTER VII

DISCUSSION

The concept constant direction of the riccati equation has

been defined. It has been shown that as a consequence the dynamic

dimension of the riccati equation II-3 is less than d. An algorithm has

been presented which completelycharacterizes the set of constant

direction for the case s = 1.

It is of interest to note that the data-differencing technique used

in [8l has a simple interpretation in terms of constant directions. For

the totally augmented state model the covariance function for pure

filtering

P = E(x - x ) ( x - x )'
n/n —n — n / n — — n / n

has singularities in the domain of the (s X d) observation operator H

where Z = Hx i.e. , HP = 0, all n ^ 0. But as the one-step pre-
n n n/n c r

dictor error covariance function P ., , is related to P . by
n+l/n n/n '

p ,, / = i|rP , iff' + GG' (see [4]}, therefore
n+l /n n /n

. = HP , *' + H*"1GG/ = H^r"1GG / all n > 0.
n+ l /n n /n T
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That is, corresponding to the singularities of P . in the domain of

H are the constant directions Hi!; of P , , , for all n ^ 1. This
n/n- 1

means that prior to any further analysis the dynamic rank of the

riccati iteration for P , is reduced by the dimension of the obser-
n/n-1

vations. In addition the dynamics of the one-step predictor estimate

equations are reduced by the same factor as

, . = Hx . + HP H'(HP H')#(Z - Hx . ,) = Z
n+l /n n/n-1 n n n n/n-1 n

all n £ 0

by the pseudo-inverse lemma of Kalman in the appendix of reference

[ll]. Hence only the estimates for the remaining d directions need

be found by the usual estimate equations.

In conclusion,data-differencing reduces the computational com-

plexity of the optimal system, however in general it does not give

maximum reduction.
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